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Abstract—NASA Mars Rover operations are planned anew ev-
ery day, in contrast to traditional deep space missions where
operations can be planned weeks or months in advance. Verifi-
cation of the rovers’ spacecraft commands must be performed
quickly, implemented robustly, and must consider multiple
possible outcomes. In this paper we discuss the architecture
behind one component of our system, a software tool named RP-
check that evaluates command sequences created by the Rover
Planner (RP) team. RP-check is one component of the Rover
Sequencing and Visualization Program (RSVP), our primary
tool for commanding and validating the mobility, arm, and
turret subsystems on the rovers.

RP-check is the spacecraft sequencing equivalent of program-
ming language analyzers likelint [6]. It automates the analysis
of sequences of commands, evaluating their conformance to best
practices described by mission-spanning Flight Rules and Rover
Planner team-specific recommendations. It checks hundreds
of rules and typically completes its assessment in less than
30 seconds, enabling Rover Planners to continuously validate
and refine their command sequences many times a day while
planning activities.

RP-check owes its success to a simple framework that enables
it run quickly and makes it easy to add new rules. Built and
maintained by members of the Rover Planner team, new rules
and test cases can be validated and deployed quickly to ensure
that any issues of concern that arise during operations will be
addressed in all future plans.
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1. INTRODUCTION

Every day offers a new experience for NASA’s Mars Rovers
Curiosity and Opportunity. Human operators plan each whole
day of rover activities by creating new sequences of com-
mands that must be reviewed, verified and possibly corrected
before being uplinked to the spacecraft. A complete descrip-
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tion of the Mars Science Laboratory (MSL) operations plan-
ning model is beyond the scope of this paper, see [4], [10],
[1], [8] for more details. In short, on a given planning day
the mobility, arm and turret plans spanning one or more days
are written into command sequences and reviewed tactically
by the Rover Planner team (two or more people) using the
Rover Sequencing and Visualization Program (RSVP, [19]).
Initial versions of their sequences are verified throughoutthe
day by multiple software tools, and the final versions are
also reviewed by the whole operations team (approximately
twenty people).

Most commands sent by Rover Planners are event-driven (i.e.,
each activity must complete before the next will begin), but
the spacecraft also supports time-constrained commanding.
All commands sent to Mars are either simulated or checked
by hand against a database of Flight Rules. These are con-
straints on mission operations that are typically levied either
as a result of lessons learned while creating the spacecraft, or
from problems or idiosyncrasies discovered during mission
operations. Flight rules are expressed in English prose, and
the operations team enforces them daily either by manual
review or via automated checkers like RP-check or those
listed in the next section. The flight rule database is not
static; the nature of extended flight operations is that flight
rules are created or re-assessed fairly frequently. RP-check
is a rule-based checker, and was designed to support easy
incorporation of new and updated flight rules.

Other MSL Validators

SeqGen is the command validator that checks every MSL
sequence planned for execution on the rover [11]. As used
on MSL, it evaluates a subset of flight rules on all uplinked
commands and produces reports of known or possible rule
violations. All such potential violations must be resolved
manually before commands are authorized for use in flight.
Some known limitations of SeqGen are that it does not model
off-nominal branches (e.g. “else” commands are typically
not evaluated), does not model most mechanisms explicitly,
can only track a limited number of parameters, and can only
apply Flight Rules to a single sequence at a time. As currently
implemented, many false positive warnings are generated, it
takes tens of minutes to assess command sequences on a busy
day, and the duration of the process required to update its
software database by adding or modifying rules can be weeks
or longer.

The Surface Flight Software Simulation (SSIM) component
of RSVP performs a high-fidelity simulation of the nominal
rover mobility, arm and turret command sequences. It uses
detailed 3D meshes generated from stereo imagery collected
by the rover to inform its position and attitude estimates
during its simulation, and it runs much of the same Flight
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Figure 1. Basic workflow of data passed through RP-check

Software that controls the actual rover. SSIM also enables
sensitivity analysis of arm and drive operations by expanding
safety zone boundaries using simulation “halos”, and allows
varying the nominal drive behavior by changing the amount
of slip predicted for the terrain. But although SSIM provides
a very high fidelity prediction of the execution of a single plan
and its duration, it cannot evaluate how well the plan adheres
to flight rule constraints, nor does it assess commands in off-
nominal branches (e.g., “else” clauses that never execute).

Related Work

The need to quickly check spacecraft commands with a
lint-like tool extends beyond RSVP-enabled projects like
the Mars Exploration Rover (MER), Phoenix, and MSL
missions. Cassini’s Imaging Science Subsystem (ISS) and
Visual and Infrared Mapping Spectrometer (VIMS) teams
used a similar tool called the Remote Constraint Checker to
validate sequences [3]. During operations this enabled instru-
ment teams to receive early feedback when they submitted
problematic parameters in their commands, and ultimately
enabled them to deliver error-free sequences. In contrast to
RP-check, Cassini’s Remote Constraint Check uses a client-
server based model where a remote user can submit uplink
commands and parameters to a server for validation. This
was due to the ISS and VIMS teams being remote to JPL.
Both Cassini’s Remote Constraint Checker and RP-check are
used in addition to SeqGen, which also remotely validates
sequences.

[12] abstracts over many approaches to model-based check-
ing of autonomous systems, giving some examples from the
Remote Agent controller for the Deep Space One mission.
[15] provides more details about Remote Agent’s validation
of the Planner, Executive and other component plans using
first-order predicate logic to confirm temporal and other con-

straints, and a Deep Space One uplink constraint checker that
validated flight rule conformance. Unlike RP-check which
focuses primarily on event-driven command transitions, [13]
describe the language and capabilities of a TOPEX/Poseidon
validator designed to use timed linear logic constraints.

2. GENERAL ARCHITECTURE

The Rover Planner sequence and Flight Rule checker (RP-
check) assesses how well the planned sequence of commands
obeys relevant flight rules. It has access to different knowl-
edge about the current state of the vehicle than the SeqGen
validator. For instance, RP-check tracks the current values
of tens of thousands of parameters stored in Non-volatile Pa-
rameter Memory (NPM), many of the 41 motor mechanisms
on the rover, and reads the MSlice tool’s current high level
mission operations plan outlining the general timing of all
activities being scheduled [14]. See Figure 1 for the overall
workflow. RP-check does not model any knowledge about the
terrain or surrounding imagery; it does model rover pose and
motor positions, but only using a simplified flat-world model,
nothing like the detailed simulation performed by SSIM. In
practice these have not been significant limitations however,
because Flight Rules are typically written to describe inter-
dependencies between commands, not specific terrain-related
behaviors.

RP-check owes its success to a simple framework that enables
it to run quickly and makes it easy to add new rules. It
generates a single execution trace though all commands,
expanding any nested sequence calls into a serialized list of
commands. Certain configuration changes like pose estimates
that result from driving and arm operations are modeled once,
and their results are cached and made available for later
analysis by multiple rules (see Table 1 for a complete list).
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Adding a new rule is as simple as determining what parts of
the flight system are relevant to the rule, modeling them in
variables, and writing code to step through the sequence trace
and evaluate only those commands and arguments relevant to
the new rule.

RP-check’s speed was explicitly one of its design goals: a tool
that completes its analysis in only 30 seconds is considerably
more useful – and more likely to be used frequently during
the planning day – than one that takes ten minutes or more.
The goal was to make RP-check something that could easily
be invoked when the Rover Planners had even a few spare
moments, so that they could catch and fix errors early and
often. Considerable engineering effort therefore went into
making the tool fast.

RP-check accepts as input a single Rover Markup Language
(RML) file containing one of more command sequences that
are planned to execute across one or more Martian Solar Days
(sols). RML is a dialect of XML developed for spacecraft
commanding. It was developed for the MER mission and
later reused and adapted for the Phoenix lander and MSL
missions. Using an XML-based language was very helpful
in developing RP-check and its predecessor, FR-check, as
XML parsers are readily available for nearly all computer
languages; this was a helpful leg up in getting both scripts
up and running.

RP-check presumes that the RML file is syntactically valid,
a property which is ensured by the Rover Sequence Editor
(RoSE) component of RSVP. RP-check constructs an ex-
ecution trace of the RP sequences starting with the main
sequence of the file, typically the DEFAULT sequence. It then
serializes all the included commands, recursively expanding
out any invocations of sub-sequences into a single full listof
commands. Obscure cases such as sequences that recursively
invoke each other (so called “ping-pong” sequences) are
detected and cut off at the first level of nesting, to prevent
an infinite command expansion.

RP-check achieves 100% code coverage over command
sequences by making an unusual simplifying assumption.
When a conditional is found in a sequence, it is treated simply
as another command, not as place where the control flow of
sequence execution sequence might change. That has the
side effect of causingbothbranches of each conditional to be
evaluated. While that is not a realistic representation of how
the sequence will be run, it does allow RP-check to review
all sequenced commands, not just those in the nominal path
of execution. An ideal validator would consider all possi-
ble control flows through a sequence, honoring conditional
branches and evaluating only those commands relevant to
each possible outcome. However, the number of possible
paths is exponential in the number of conditionals and Rover
Planner sequences typically involve many conditionals, so
that was not a generally viable option. This simplifying
assumption has worked so well that only one RP-check rule
has required a more nuanced understanding of control flow
to achieve its purpose.2 This is in contrast to SeqGen and
SSIM, both of which follow a single branch at a time (often
via “magic comments” as explained below).

2There was one rule whose sequencing frameworkrequiredexplicit mod-
eling of branches, so the capability to model multiple controlpaths was
added. But it only models conditionals where one of its branches explicitly
commands termination of the current sequence. That simplifyingassumption
reduced millions of different traces down to a more manageable tens of thou-
sands of traces, enabling the overall assessment to complete in a reasonable
amount of time.

One key to RP-check’s success was its rule writers’ diligent
effort to eliminate false positives. In contrast to tools such as
SeqGen, which assume that their user has weeks to respond
and can therefore afford to over-warn, RP-check is used in
an environment where its users might be able to spare only
minutes to process its output – if that. It was therefore
critical to ensure that its output was tightly focused; if it
issues a warning, its user can safely assume the warning
is worthwhile. This avoided the possibility of accidentally
training the team to ignore its output, and saves them from
having to tediously search for the bits of wheat hidden among
the chaff, a time sink they certainly cannot afford.

RP-check also allows sequence authors to disable certain
warnings by adding “magic comments” to commands. This
capability allows the sequence author to eliminate false posi-
tive RP-check warnings, while at the same time preserving a
visible affirmation of their existence directly in the RML file.
Because Rover Planner sequences are reviewed several times
prior to uplink, the comments provide context to reviewers
that a warning was issued, and gives them an opportunity to
ask the author about it.

Other magic comments serve to explain complex or obscure
command arguments. For instance, given a command argu-
ment expressed as0.785 radians, RP-check will look
for a comment such asangle=45/deg. Whenever it finds
such a comment, it will actively ensure that the command
argument matches the comment’s value after accounting for
unit conversion. Similar annotations are used to docu-
ment arm target names and locations, command durations,
expected distance traveled, assumed TRUE/FALSE values
for conditionals (used by SeqGen and/or SSIM), steering
and driving angles, arbitrary parameter values, command
sequence names, sol numbers, and memory offsets not doc-
umented explicitly in the Command Dictionary. Any incon-
sistencies between command arguments and the explanations
given in magic comments will result in a warning message; a
typo in the name of the magic comment also produces a warn-
ing, thus averting any incorrect expectation that a mistyped
rule is being checked. Magic comments also help enforce
sequencing author expectations, expressing constraints on
parameters as described later in this section.

RP-check offers its output in two formats, selectable when
the script is run: as plain (though optionally color-coded)
text output directly to the terminal, or as XML. This latter,
machine-friendly format is useful when running RP-check as
a child process of the RSVP sequence editor, RSVP-RoSE:
RSVP-RoSE can open a modeless dialog box showing the
interpreted output of RP-check, which it runs automatically
and asynchronously as soon as the user makes any change to
the sequence (see Figure 2). When the user has been idle
long enough, RSVP-RoSE “catches up” and displays RP-
check’s latest output to the user automatically. References to
commands are translated to hyperlinks; when the user clicksa
link, RSVP-RoSE highlights and scrolls to the corresponding
command. The intent of this feature is both to encourage
running RP-check and to make it even easier to interpret and
act on its warnings.

Early on, RP-check was officially integrated into the script
Rover Planners run to deliver their final sequences in prepa-
ration for uplink; it is therefore effectively mandatory torun
it at least once during the planning day. Results of this final
verification step are automatically posted to the planning page
and are available for team review.
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Figure 2. Example of RP-check’s XML output as rendered by the RSVP/RoSE GUI

RP-check also serves as a valuable self-training device. When
new Rover Planners trainees construct their own sequences at
their own pace, RP-check provides immediate feedback on
how well they are doing without requiring any homework
grading turnaround time.

Sophistication of Models

RP-check does not typically employ a very detailed model of
spacecraft instruments, nor of the world around it. It uses just
as much detail as is needed to implement individual rules.

Consider the drill instrument. Although RP-check maintains
a model of the rover’s drill feed motor position, it cannot
predict when the drill bit will impact the terrain. So any
commands that are expected to impact the terrain result in
the current feed position being marked “unknown”. Position
knowledge is restored by any command that moves it to a
fixed location, e.g. a drill stow command. Although that
model seems quite coarse and less detailed than what SSIM
can provide, it has proven sufficient to validate and find errors
in even complex drill test sequences.

For mobility, RP-check has no knowledge of the shape of
the 3D terrain surrounding the rover. Instead, it relies on
a flat-world assumption, using only X,Y and yaw to model
what should be in reality a full 6 degree-of-freedom rover
position and attitude. Yet even that simple model is sufficient
to express many of the constraints on driving, especially when
supplemented by “magic comments” expressing the expected
distance driven.

RP-check is not a tool for resolving fine positioning details
due to varying amounts of slip; SSIM does that job very
well. But RP-checkdoesverify that when drives are planned
in high-slip environments (determined by checking the state
of certain mobility parameters), command sequences will
include enough margin to account for the maximum amount
of slip being predicted. E.g., if 80% slip is expected during
a drive, then the sequence must either include five times as
many primitive ARC commands (compared to no-slip), or
must allow five times the duration of higher level GOTO
commands that drive toward a specific location on the terrain.

Preprocessing Annotations

Certain computations are known to be needed for more than
one rule. For instance, estimating the rover’s position and
orientation at each command is needed by all rules that take

distance traveled into account. So a number of quantities
are all precomputed prior to evaluating any individual rule.
Table 1 shows the pre-annotated values provided by RP-
check. Having all these data readily available often simplifies
the construction of new rules, helping preserve our abilityto
turn around new rules quickly.

Typical Rule Framework

A typical rule is implemented as a subroutine call. Rules are
written directly in a standard scripting language, not in an
abstracted mini-language, to provide the most flexibility in
implementation. Each rule is passed a standard set of inputs,
including the expanded and serialized trace of all commands
in the RML file more-or-less in order (the exceptions being
the non-modeling of conditionals, and the breaking up of
recursive calls).

Each rule will typically loop independently through all the
planned commands, and will often choose to ignore most
of them. Only those commands relevant to the rule at hand
will be explicitly intercepted and dealt with. This strategy
allows multiple developers to work independently, as each
rule functions independently of the others. It also enablesRP-
check to run even faster by distributing its rule checks across
multiple cores or CPUs in parallel.

Flight rule needs are encoded as succinctly as possible. Most
of the rules are implemented using nothing more than short
perl functions.

But it is important to provide enough capability to implement
complex rules as well. For example, the rover’s Visual
Odometry capability [9], [5] enables it to measure unexpected
pose changes (e.g., translational slip) by comparing pairsof
stereo images. But those images must overlap; so RP-check
provides a rule that tracks the pointing direction parameters,
and calls out to several helper functions to render a ray-traced
scene illustrating the overlap between viewing angles. A
warning is issued and a report is created if adjacent images
do not overlap by a minimum percentage (see Figure 3). As
another example, when commanding Visual Target Tracking
(VTT) to track targets across images acquired between drive
steps, RP-check also generates a report documenting the
tracked feature’s location, as in Figure 4. The flexibility that
enables experts to encode the right amount of detail for each
rule is critical.
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Table 1. Annotations that are cached and available for use within each rule.

Field Description
Arm

ARM IN CONTACT Boolean true when the arm is expected to be in contact with terrain
ARM OVERDRIVE Amount of overdrive used during arm placement (meters)
ARM TARGET DIST Distance to/beyond the current Arm Target (meters)
ARM TOOL Current Arm Tool
ARM TOOL DESC Description of command that most recently set the Arm Tool

MAHLI Imager
MAHLI OPEN Boolean true when MAHLI cover is open
MAHLI OPENDESC Description of command that opened MAHLI
MAHLI OPENELT Command that opened MAHLI
DURATION Coarse estimate of duration of this command (details only for imaging)
ACCUMULATED DURATION Coarse estimate of overall command durations

Drill
BIT IN ROCK ELT Command expected to have placed the drill in contact
DRILL STOW DESC Description of command that stowed the drill
DRILL FEED POSMM Drill Feed location post-command (millimeters)
DRILL FEED POSMM WAS Drill Feed location pre-command (millimeters)
PRELOAD N Applied Preload Force (Newtons)
PRELOAD PRELOADED Boolean true when this command preloaded the arm
PRELOAD UNLOADED Boolean true when this command unloaded the arm
BATTLE SHORTDESC Description of command that enabled Battle Short
PERCUSSOR RAMP Boolean true when this command runs Percussion

Dust Removal Tool
DRT ACTIVE IN THIS CMD ELT Boolean true when DRT active
DRT RUNNING ELT Command that turned the DRT on
DRT TURNED ON HERE Boolean true when this command turns the DRT on

Inlet Covers
IIC OPEN Mapping from Inlet Cover name to Description of Open command (if open)

Basic Driving
SIMPLE SIM DELTA H Heading change expected from this command (radians)
SIMPLE SIM DIST Distance driven by this command (meters)
SIMPLE SIM START H Pre-command Initial Heading (radians)
SIMPLE SIM START X Pre-command Initial Site Frame X position (meters)
SIMPLE SIM START Y Pre-command Initial Site Frame Y position (meters)
SIMPLE SIM START VO AZ Pre-command Visual Odometry Azimuth angle (RNAV radians)
SIMPLE SIM START VO EL Pre-command Visual Odometry Elevation angle (RNAV radians)
SIMPLE SIM H Post-command Current Heading (radians)
SIMPLE SIM X Post-command Current Site Frame X position (meters)
SIMPLE SIM Y Post-command Current Site Frame Y position (meters)
SIMPLE SIM VO AZ Post-command Visual Odometry Azimuth angle (RNAV radians)
SIMPLE SIM VO EL Post-command Visual Odometry Elevation angle (RNAV radians)

Detailed Driving
DOESVO Does this command perform a Visual Odometry Update
NAV GOAL Current Navigation Goal X, Y with Frame, Frame Index
VTT TARGET Current Visual Target Tracking X, Y, Z with Frame, Frame Index
DRIVING Boolean true when this command could cause motion
TRCTL Boolean true when Traction Control is enabled
STEERS Boolean true if this command could steer the wheels
STEERDESC Description of most recent steering command
STEERLF Current LF steering position (radians)
STEERRF Current RF steering position (radians)
STEERRR Current RR steering position (radians)
STEERLR Current LR steering position (radians)

Internals
NOSTACK PARALLELS List of sequences that might be running in parallel
COND INSIDE Conditional nesting depth count
PLAN SOL Sol on which this command will execute
STACK DEPTH Sequence nesting depth count
MOT 15000 Boolean true when this sequence was run without being cleaned up yet
MOT 15002 Boolean true when this sequence was run without being cleaned up yet

When warnings are generated, they will automatically in-
clude a link to the command at which the violation was found.
The best messages are those that not only point out a problem,
but also link back to any prior information that will be helpful
in resolving the warning (e.g. “Command #244: You opened
the camera dust cover in command #200, but failed to close
it by the end of the backbone here.”). See Table 2 below for
more example warnings.

Using and Updating System State

After each communication from the spacecraft, our downlink
team automatically documents the state of the spacecraft in
files made available to SSIM and RP-check. These files con-
tain the values of over 24,000 ground-defined parameters and
369 pieces of system state as of September 2017 (e.g., current
motor positions, current vehicle position). This information
is stored in Non-volatile Parameter Memory (NPM) flash on
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Figure 3. Example report created by the Visual Odometry Overlap Rule

Figure 4. Example report created by the Visual Target Tracking (VTT)rule on Sol 1822.

the spacecraft, and provides the initial state used to predict
future spacecraft behavior.

RP-check provides a framework that not only reads NPM
to initialize its state, it can also track changes made to
parameters throughout Rover Planner command sequences.
This allows rule implementers to validate constraints evenas
parameter values change, and when a constraint is violated to
report exactly which parameter-changing command caused it.

Rover Planners can also express two forms of parameter con-
straints in their sequences; snapshots and direct comparisons.
If the Magic Commentrestore seqid=s1,s2,... is
used in an RML file, RP-check will snapshot the parameter
state before any of those sequences is run, and keep track
of all parameter assignments made while any of the named

sequences is active. Then, when all of the sequences become
inactive, it will compare all the named parameters against
their initial NPM values. You’ll get a warning if there are
any differences from the initial state. This helps ensure that
diagnostic routines undo any of their parameter changes.

Direct comparisons of scalar parameters to constant val-
ues can be enforced as well. If Magic Comments
parm EQ(parm,val) (or related forms withNE, LE,
LT, GE, GT) are found, the named parameter will be
checked to ensure that its current value satisfies the given
constraint; if not, a warning will be given. Any number of
these may appear in comments, they will be evaluated as a
conjunction of constraints, and a warning will be generated
for each one that fails to satisfy its constraint.
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3. IMPLEMENTATION

RP-check is primarily written in Perl [18], using object-
oriented syntax available in perl v5.

The MSL Command Dictionary is an XML file shared by
all ground tools that encapsulates the legal syntax for space-
craft commands. Whenever a new Command Dictionary is
released, RP-check developers preprocess it to create string-
initialized perl constants to represent each command opcode
/and argument name. By convention, RP-check developers
refer to command and argument namesonlyusing these auto-
generated constants. Doing so enables the perl compiler
itself to ensure there are no typos or outdated references to
nonexistent commands or argument names in the validator.

Helper Tools

RP-check makes use of multiple helper programs and scripts
to perform its modeling. It uses the freeware ray-tracing
rendererRayshade[7] to generate images used in the Visual
Odometry computation, and other helpers developed by JPL
(e.g., some tools in [2] ) to assist with the following functions:

• Query the current state of the Activities being planned, e.g.
start times, sequence names.
• Check the onboard status of Sample Processing Acquisi-
tion Manager (SPAM) scripts
• Convert between multiple time formats
• Verify geometric camera model external 3D pointing pa-
rameters
• Backup files
• Prune rover state files down to a more manageable size
• Render a ray-traced scene of overlapping 3D camera frusta
for Visual Odometry overlap computation
• Compute the percentage of pixels in common for Visual
Odometry overlap assessment
• Annotate images with text and graphics
• Compute Double Ackermann steering angles
• Compare RAM offsets to motor status fields
• Compare hex addresses against the symbol table

4. VALIDATION

A validator is only as useful as tests prove it to be. RP-
check includes a detailed unit test framework that allows us
to ensure that any new changes have not broken its existing
capabilities.

An RP-check test case is simply an RML file designed to
check the outcome or evaluation of a single rule. Each RML
file follows a particular naming convention.

rulename.(pass,fail).###.rml

A “pass” file should pass the named rule (its outcome under
other rules is irrelevant for the purpose of this test). A “fail”
file should fail the named rule; often there are a greater num-
ber of negative test cases because there are usually more ways
to be wrong than right. Test files may also be provided in a
plain ASCII “rseq” format, as supplemental batch processing
will convert them to the standard RML format prior to testing.
Test files may be as short as a single command, or as detailed
as the full contents of complete multi-sol plan RML file.
Table 2 shows some simple examples.

The unit test framework will run the current development ver-
sion of RP-check over each test file, and log the outcome of
each check to stdout. We use GNU Parallel [16] to efficiently

evaluate RP-check’s performance over a thousand RML files
in under ten minutes. Full test logs are compared to prior
logs to ensure any unexpected changes will be discovered and
corrected prior to release.

In addition to these unit tests, developers often run tests com-
paring the outputs of old and new versions of RP-check on
many of the flight-proven RML files already sent to Curiosity.

5. USAGE DURING M ISSION OPERATIONS

Rover Planners can run RP-check dozens of times each day.
They rely on the internal RP-only checks and the MSL
project’s Flight Rule checks to help ensure the safety of their
sequences. Results of the MSL Flight Rule checks are posted
for review by the entire uplink team every day.

As of September 2017, the MSL version of RP-check imple-
ments 242 explicit rules, and has the potential to generate 534
different Warnings and 542 Error messages. It has been run
over 1,114 RML files, and validated individual sequences that
have executed on 1,139 different sols.

RP-check has been used to validate Mars Rovers’ command
sequences for Curiosity since 2012, and its predecessor
(Flight Rule check, or FR-check) for Spirit and Opportunity
since 2004. As such, it is also directly relevant to the 2020
Mars Rover mission, which will use the MSL operations
model as a starting point.

Automated Generation of Safety Deactivate Sequences

Over the years some of RP-check’s modeling became so
detailed, it became possible to not only validate certain se-
quences, but alsogeneratesome using the tool. In particular,
MSL took advantage of this to automate the creation of
“Safety Deactivate” sequences in 2016. That automation
eliminates the need for manual creation and review of those
sequences each day, saving a few minutes for simple plans,
and tens of minutes on complex planning days.

Rover Planners create a single “backbone” command se-
quence for each period of mobility, arm or turret activi-
ties. To ensure that those backbones and any associated
helper sequences do not exceed their allocated duration, a
corresponding “safety deactivate” sequence is constructed for
each backbone. This sequence of contingency commands is
run automatically after the planned duration has elapsed to
stop any backbones or helpers that overrun their expected
durations, and clean up any interrupted commands.

From 2004 until 2016, human rover planners had to con-
struct these safety deactivate sequences by hand each day,
and review them several times prior to uplink. RP-check
has validated the contents of these sequences for years, so
MSL undertook an Operations Improvement Initiative to fully
automate their creation. RP-check already understood when
commands were missing from those sequences, so in 2016
it was updated to alsoconstructsuch sequences on its own.
This automated construction of safety deactivate sequences
now provides even more safety: more checking is done than
ever before, and the sequences are re-checked just before
the backbones are finally delivered for uplink to ensure that
nothing was forgotten.
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Table 2. Some of RP-check’s simpler unit tests. Actual commands have been replaced with pseudocode. These illustrate
some of the differences between RP-check and SeqGen. (1) RP-check supports using magic comments to disable warnings.
(2) RP-check processes all sequences within a sol, not just asingle sequence. (3) RP-check provides access to over 24,000

system parameter values.

Test Sequence Result

Rule RP-0150: Warn when Traction Control is not being used
trav0: Drive 1 meter forward Warning(detected at command #0 in trav0): Hey, why

aren’t you using traction control? Please use
“traction control disabled=1” to override.

trav0: Drive 1 meter forward # traction control disabled=1 passed
trav0: Turn on Traction Control
trav0: Drive 1 meter Forward passed

Rule RP-0016: Explicitly Power Off IMU After Driving
trav0: Drive 1 meter forward Warning(detected at command #0, in trav0: You didn’t

power off the IMU after driving
trav0: Drive 1 meter forward
trav0: Run trav1
trav1: Turn off the IMU passed

Rule RP-0136: Assert parameter values
trav0: Set Drive parm susp diff min to -0.517
# parm GE(drive suspdiff min,-0.463) Error (detected at command #1 in trav0): FAILED

Parameter constraint parmGE (drive suspdiff min,
-0.463), current value “-0.517” does not match

trav0: Set Drive parm susp diff min to 0
# parm GE(drive suspdiff min,-0.463) passed

Operational Impacts

As RP-check has become increasingly trusted by the project,
it has taken on additional roles. In addition to providing the
Automated Safety Deactivate Sequences, it is also a typical
component of the Corrective Actions recommended in re-
sponse to Incident Surprise Anomaly reports. Investigations
often conclude with a recommendation to implement a new
RP-check rule, which can usually be accomplished swiftly.
This not only reflects well on the project’s confidence in the
tool, it also has helped to keep the Rover Planners’ process
from becoming unsustainably cumbersome. Instead of a
growing patchwork of rules that must be manually checked or
new processes that must be followed, we have an equivalent
fast, automatic check – one that never becomes tired or loses
focus, as a human might. Some examples appear below.

Keeping management of the RP-check tool in the hands of
Rover Planners allows us to make, test, and release changes
quickly. If a commanding error is discovered, or a strange
new system behavior is understood for the first time, it can
take time to communicate all aspects of that problem, its
implications and its workaround to the entire team. We mini-
mize the chance of repeating earlier mistakes by updating this
software validation tool quickly.

Problems and Resolutions

Here are a few examples illustrating how nimble RP-check
development activities have led to quick and effective prob-
lem mitigations.

• Checking the wrong Master Sequence IDRover Planners
begin each of their primary “backbone” sequences with a
check to ensure that it is being called by the expected “mas-
ter” sequence. Master sequences are the primary command
sequences that orchestrate the rover’s daily activities, activat-
ing each backbone and Safety Deactivate after the backbone
is due to finish. These are typically named for the sol on
which they will execute.

On sol 1247, the wrong check was sequenced in an arm
backbone; it checked for “247” in the sequence name, but the
prior sol’s “246” master was still running. Handover from one
sol’s master sequence to the next typically happens around
10am Mars Local time, and this backbone was unusual in that
it was scheduled to run prior to that handover.
RP-check was quickly updated to check the MSlice plan to
learn precisely when the handover to a a new master sequence
would occur, and now ensures that RP sequences will test for
the correct one.
• Bug counting motions between VO updatesRover flight
software keeps track of how many motions take place be-
tween Visual Odometry (VO) updates. Rover Planners can
then use that knowledge to schedule a new update only if the
rover has been commanded to move since the last one.
On sol 1753, we noticed that counter would sometimes
increment even though no motion was commanded. We
eventually realized it was due to a simple flight software bug
that always incremented the counter during certain types of
primitive motion commands, even if the command decided no
actual motor motion was necessary (e.g., given a command to
straighten wheels when they are already straight).
Changing flight software takes a lot of resources. But once
we understood the nature of the bug, we were able to quickly
update RP-check to model it. Now RP-check issues a warning
if a sequence attempts to use that counter after any number
of primitive motion commands has been issued. This has
enabled us to change our current sequences, and be confident
that future sequences will avoid tripping this bug again,
without requiring a resource-costly flight software update.
• Traction Control is running New Traction Control soft-
ware was uplinked in 2017, and has been in use on Curiosity
since sol 1646 [17]. This capability was designed to reduce
wear and tear on the wheels, so the project recommends it be
used for most driving activities.
RP-check was updated to track the state of this software,
incorporating a new TRCTL annotation to indicate that status
(documented in Table 1). Given that annotation and the
existing “is this a DRIVING command” annotation, adding
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a new rule to ensure that Traction Control is enabled for
all driving commands was straightforward (see Table 2 for
related unit test outputs).

Future Directions

Looking ahead to future missions, several enhancements
suggest themselves.

• Parallel Processing of RulesAlthough we have already
split the evaluation of hundreds of rules across multiple CPU
cores, we have not yet optimized their distribution. We should
realize more gains by actively choosing how to distribute rule
evaluations based on their predicted durations.
• Better Terrain Modeling RP-check’s simplified terrain
model has been sufficient for validating existing flight rules.
But if inputs to RP-check were expanded to include pose
estimates derived from detailed terrain modeling under mul-
tiple slip assumptions, RP-check could add new types of con-
straints to ensure resource constraints are met even in slippery
terrains under wide variations in the amount of predicted slip.
• Better Visual Odometry Overlap RP-check’s current Vi-
sual Odometry overlap computation assumes the world is flat
and well-textured with visible features. But Rover Planners
fairly often have to point cameras directly at features of
interest to make up for feature-sparse areas like sand patches,
or point at hillsides when climbing. Adding knowledge of
terrain shape and texture could make the automated checking
even more robust.
• Tighter coupling with traditional programming lan-
guage static analyzersThe MER and MSL sequencing
model is quite restricted, supporting subroutine calls and
simple conditionals but only limited use of variables and
no recursion. There are likely additional benefits to be
gained, especially in modeling of conditionals, so long as
such integration does not slow down the verification process
too much.

As missions move in the direction of placing more autonomy
onboard the spacecraft, validation tools like this become even
more important. Although high fidelity simulators like SSIM
can generate detailed, precise individual traces by emulating
flight software in a simulated environment, you still need
tools that can address the uncertainty inherent in exploring
and interacting with new terrains.

6. CONCLUSION

Static analysis of spacecraft command sequences’ conformity
to mission Flight Rules and Rover Planner team best practices
helps ensure operational safety. Our RP-check software has
performed this task for mobility, arm and turret command
sequences quickly and robustly for years. The ability to
quickly deploy new rules developed by experts keeps space-
craft operations safe and effective. Future missions can
benefit from making similar architectural choices.
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